Avatar feed
Responses: 2
SGT Unit Supply Specialist
1
1
0
SGT Mary G. thanks for the share... for those of us "unfamiliar" with Photonic Crystals.
..."A Little History
In electronic semiconductor crystals, electron waves scatter off the layers or rows of atoms. Bumping into periodic row after periodic row of atoms, the backscattering is reinforced if the electron wavelength matches the spacing of successive layers. Venturing off in different directions, the electron waves meet other layers of atoms. No matter which direction they go, they just can't get through if their wavelengths roughly match the layer spacings. The result is the celebrated forbidden bandgap of electronic semiconductors like silicon.

While it took thousands of years of metallurgy and materials science to discover and bring to perfection electronic semiconductor crystals, photonic crystals are in principle more accessible. Since electromagnetic waves appear equally well at all wavelengths from giant radio waves to tiny gamma rays, artificial electromagnetic crystal structures can be made with any convenient row spacing and size.

Only human imagination limits the crystal design and structure-we are no longer restricted to real material crystals that grow in nature. Yet initially there was no assurance that any particular design would actually produce a forbidden photonic bandgap. Ultimately the search for the first electromagnetic bandgap crystal would take four years, and involve the participation of numerous experimentalists and theorists who had no idea in advance whether a true photonic bandgap could ever even exist.

The absence of early empirical success was compounded by the problems that faced theorists. Electromagnetic waves are vectors like electric fields. It therefore took time for theorists to retool their band structure computer programs to accept vector waves. Several groups that undertook this task, including M. Leung of Polytechnic University, and K.M. Ho, C.T. Chan and C.M. Soukoulis of Iowa State University, began to make valuable predictions. The Iowa State group discovered that the diamond structure would indeed produce a real bandgap. Diamond structure is a form of face-centered-cubic (fcc) in which two atoms, instead of one, are inscribed into each unit cell. The form of diamond structure that was most effective, giving the widest photonic bandgap, consisted of only the dielectric rods ("valence bonds") between the atoms, which were allowed to shrink simply to points.

There was also the question of whether the required refractive index might be unattainable in real materials, but the calculations showed that a refractive index of as little as 1.87 was enough in a diamond structure. As there are many optical materials available with refractive indices of up to 3.5, it seemed feasible that photonic bandgaps could be successfully made from real existing materials.

But theoretical searches for photonic bandgaps in fcc structures were at first elusive. Initially, only a pseudo-gap emerged between the 2nd and 3rd bands but eventually, at a little higher frequency, a bandgap emerged2 between the 8th and 9th bands in fcc structures. Later, contrary to all expectations, H.S. Sozuer, J.W. Haus, and R. Inguva found that a bandgap, albeit a small one, could exist even in a simple cubic "scaffold" structure."
(1)
Comment
(0)
SGT Mary G.
SGT Mary G.
7 mo
SGT (Join to see) Amazing isn't it> Even though I do not fully understand the extend of the technology, it makes enough sense to be able to realize there are potential application. It seems that protection from excessive EMF could be one of them.
(1)
Reply
(0)
SGT Unit Supply Specialist
SGT (Join to see)
7 mo
SGT Mary G. - appreciate your shares... otherwise I wouldn't have known anything about them.
(0)
Reply
(0)
Avatar small
MAJ Dale E. Wilson, Ph.D.
0
0
0
Sorry, I'm from the 1960s liberal arts generation. This is WAY over my head!
(0)
Comment
(0)
Avatar small

Join nearly 2 million former and current members of the US military, just like you.

close